Skip to content

Joyful Physics

格软物质 推硬物理

菜单1 菜单1
  • 首页
  • 关于
  • 连载
  • 友链
  • 导航
Expand Search Form

定量计算分子缺陷对高分子网络弹性的影响

瞿立建 2016-09-19

视频下载自Youtube:Quantifying the impact of molecular defects on polymer network elasticity
参考文献:Science 2016, 353, 1264-1268

https://cdns.scholar.group/blog/joyfulphysics/2016/09/Science-20163531264-Quantifying-the-Impact-of-Molecular-Defects-on-Polymer-Network-Elasticity.mp4

视频台词:

Lots of materials that you use every day, like the tires on your car, super-absorbent polymers in a baby-diaper, are made of polymer networks. These networks are like nets made of molecular chains that are connected points known as cross-links. Ideally, we imagine these networks are perfect like this network made of black strings. But in reality, networks contain various types of defects, like loops represented by these red rubber bands for the chains doesn’t connected to separate junctions, or like double bridges represented by these blue rubber bands where two different chains connect to the same crosslink points. These different types of defect weakened the network.

Until recently there was no way to count these defects in polymer networks. So we did not really understand how the impact the properties of our materials. However, our team recently developed a family known as network disassemly spectrometry that enables us to count the number of loops represented here by the red rubber bands. Using new data from the method, we were able to validate new computational method that count not only the loops but also the double bridges and all types of higher order of defects as well such as this one. Now that we know the number of defects in a polymer network, we can try to calculate their impact on the properties of the materials. In our science article we measure the moduli of several polymer networks and counted the number of the loops in the same network for the first time which allows us to quantify how the network defects affect mechanical properties. Despite accounting for the defects, we found the existing models did not match the properties of polymer networks. Therefore, we developed a new theory known as the real elastic network theory that can quantitatively predict the modulus of a polymer network.

This theory is based on the phantom polymer network theory which calculates the modulus of the network by assuming that each chain is connected to the network in an ideal tree-like structure like this model of rubber bands. When you stretch the rubber-like [没听清] tire, you stretch individual molecules like the rubber band in the center of the model. The challenges are that when the network has defects each of chains stretches by a different amount. For example, here is a model of the loop in the network structure. When you stretch the network, the rubber band in the loop and the connecting chains do not strtch at all, so they do not contribute to the modulus of the network. This weaken the network. The same is true when two chains connect the same two crosslinks. In this rubber band model, you see that the chains in the center deform very little because the connection is stiff. This also leads to a weakening of the network. Using [疑似 experiment] computation, we counted the number of defects in our polymer network and we applied our theory [没听清] to calculate quantitatively how these defects affect the network properties. This gives us the ability to design networks better than before, which should have a large impact on industries such as biomedical materials, consumer products, and car tires.

分类目录 软物质物理 标签 MIT, 凝胶, 桥链, 水凝胶, 环链, 缺陷, 高分子网络, 麻省理工学院
Previous: 论科研不端行为——蒲慕明所长在神经所2007年会上的讲话
Next: 如何选择研究课题——蒲慕明所长在神经所2008年会上的讲话

功能

  • 登录
  • 项目feed
  • 评论feed
  • WordPress.org

近期文章

  • 美国物理学会流体视频大赛获胜视频 2017-10-03
  • 薄膜干涉 2017-04-10
  • 最速降线gif图片 2017-02-19
  • DNA 解链 2016-12-26
  • 生物化学机器DNA 2016-12-26

分类目录

  • Matlab (1)
  • Todd讲Matlab (6)
  • 博客教程 (3)
  • 备课讲义 (27)
    • 光学近代物理备课讲义 (7)
    • 电磁学备课讲义 (20)
  • 教学笔记 (23)
  • 未分类 (2)
  • 物理之外 (2)
  • 物理科普 (3)
  • 理论物理极础 (16)
  • 科学史哲 (6)
  • 科学时评 (31)
  • 科研笔记 (12)
  • 软物质物理 (7)
    • Doi高分子物理导论 (3)
  • 软物质科普 (9)

标签

latex PI random walk 世界一流 人物 假说 偏倚随机行走 凝胶 创新 加速度 势能 吉尔伯特 奥斯特 富兰克林 对称性 导体 导数 库仑定律 感应电动势 拉格朗日量 数学 无规行走 标度理论 梯度 泊松括号 法拉第 波 浓度梯度 理想链 电场 相空间 研究生 科学 科学家 简谐振动 能量守恒 蒲慕明 连续带电体 迭代 随机行走 静电屏蔽 非线性方程 高分子 高斯分布 高斯定理

近期评论

  • 蒲慕明所长在中科院神经科学研究所历年年会上的讲话 – Joyful Physics发表在《论研究生教育——蒲慕明所长在神经所2005年会上的讲话》
  • 术索发表在《磁介质》
  • 瞿立建发表在《友链》
  • taho发表在《磁介质》
  • taho发表在《友链》
2022年五月
日 一 二 三 四 五 六
1234567
891011121314
15161718192021
22232425262728
293031  
« 10月    

文章归档

  • 2017年十月 (1)
  • 2017年四月 (1)
  • 2017年二月 (1)
  • 2016年十二月 (4)
  • 2016年十一月 (3)
  • 2016年十月 (10)
  • 2016年九月 (10)
  • 2016年八月 (10)
  • 2016年七月 (7)
  • 2016年六月 (8)
  • 2016年五月 (9)
  • 2016年四月 (7)
  • 2016年三月 (6)
  • 2016年二月 (7)
  • 2016年一月 (8)
  • 2015年十二月 (6)
  • 2015年十一月 (6)
  • 2015年十月 (10)
  • 2015年九月 (9)
  • 2015年八月 (9)
  • 2015年七月 (7)
  • 2015年六月 (7)

Joyful Physics © 2022